کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7357895 | 1478566 | 2018 | 36 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The asymptotic properties of GMM and indirect inference under second-order identification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a limiting distribution theory for GMM and Indirect Inference estimators when local identification conditions fail at first-order but hold at second-order. These limit distributions are shown to be non-standard, but we show that they can be easily simulated, making it possible to perform inference about the parameters in this setting. We illustrate our results in the context of a dynamic panel data model in which the parameter of interest is identified locally at second order by non-linear moment restrictions but not at first order at a particular point in the parameter space. Our simulation results indicate that our theory leads to reliable inferences in moderate to large samples in the neighbourhood of this point of first-order identification failure. In contrast, inferences based on standard asymptotic theory (derived under the assumption of first-order local identification) are very misleading in the neighbourhood of the point of first-order local identification failure.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Econometrics - Volume 205, Issue 1, July 2018, Pages 76-111
Journal: Journal of Econometrics - Volume 205, Issue 1, July 2018, Pages 76-111
نویسندگان
Prosper Dovonon, Alastair R. Hall,