| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 7367205 | 1479242 | 2018 | 5 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												No bullying! A playful proof of Brouwer's fixed-point theorem
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													ریاضیات کاربردی
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												We give an elementary proof of Brouwer's fixed-point theorem. The only mathematical prerequisite is a version of the Bolzano-Weierstrass theorem: a sequence in a compact subset of n-dimensional Euclidean space has a convergent subsequence with a limit in that set. Our main tool is a 'no-bullying' lemma for agents with preferences over indivisible goods. What does this lemma claim? Consider a finite number of children, each with a single indivisible good (a toy) and preferences over those toys. Let us say that a group of children, possibly after exchanging toys, could bully some poor kid if all group members find their own current toy better than the toy of this victim. The no-bullying lemma asserts that some group S of children can redistribute their toys among themselves in such a way that all members of S get their favorite toy from S, but they cannot bully anyone.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Economics - Volume 78, October 2018, Pages 1-5
											Journal: Journal of Mathematical Economics - Volume 78, October 2018, Pages 1-5
نویسندگان
												Henrik Petri, Mark Voorneveld,