کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7374938 1480065 2018 35 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel control strategy for balancing traffic flow in urban traffic network based on iterative learning control
ترجمه فارسی عنوان
استراتژی کنترل جدید برای تعادل جریان ترافیک در شبکه ترافیک شهری بر اساس کنترل یادگیری تکراری
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی
Realistic modeling traffic flow dynamics in urban traffic network remains a big challenge at present due to the complex nonlinear characteristics of traffic flow. In this paper, a novel and model-free iterative learning control (ILC) strategy for balancing traffic flow in urban traffic network is proposed. To tackle the randomly varying trial lengths in the iteration domain of traffic system, an iterative-average operator is introduced in the proposed ILC law for tracking tasks with non-uniform trial lengths, which thus mitigates the requirement on classic ILC that all trial lengths must be identical. The learning convergence condition of the ILC strategy in iteration-average and expectation is derived through rigorous analysis. The performance and the effectiveness of the ILC strategy are analyzed by simulations on a test road network. The results show that the proposed ILC strategy can homogeneously balance the accumulation in the network and improve the network mobility.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 508, 15 October 2018, Pages 519-531
نویسندگان
, , , , ,