کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7375209 1480067 2018 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Traffic state prediction using ISOMAP manifold learning
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
پیش نمایش صفحه اول مقاله
Traffic state prediction using ISOMAP manifold learning
چکیده انگلیسی
Traffic state prediction is an essential problem with considerable implications in the intelligent transportation system. This paper puts forward an approach for predicting urban road traffic states based on ISOMAP manifold learning. By establishing a distance measurement that represents the overall geometric structure based on the Isometric Feature Mapping (ISOMAP) algorithm, this approach utilizes all consistent information regarding the traffic flow, thus improving the prediction accuracy of the road traffic state. The experimental results indicate that, compared with a traditional prediction approach, the equality coefficient has a bigger increase in value and a much lower prediction error. The traffic state prediction approach based on ISOMAP manifold learning achieves a higher level of accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 506, 15 September 2018, Pages 532-541
نویسندگان
, , , , ,