کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7377167 1480112 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Diffusion-like recommendation with enhanced similarity of objects
ترجمه فارسی عنوان
توصیه می شود مانند نفوذ مانند با شباهت بیشتر از اشیاء
کلمات کلیدی
سیستم توصیهگر، شبکه های دو طرفه، شباهت تخصیص منابع، الگوریتم های مشابه انتشار
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی
In the last decade, diversity and accuracy have been regarded as two important measures in evaluating a recommendation model. However, a clear concern is that a model focusing excessively on one measure will put the other one at risk, thus it is not easy to greatly improve diversity and accuracy simultaneously. In this paper, we propose to enhance the Resource-Allocation (RA) similarity in resource transfer equations of diffusion-like models, by giving a tunable exponent to the RA similarity, and traversing the value of this exponent to achieve the optimal recommendation results. In this way, we can increase the recommendation scores (allocated resource) of many unpopular objects. Experiments on three benchmark data sets, MovieLens, Netflix and RateYourMusic show that the modified models can yield remarkable performance improvement compared with the original ones.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 461, 1 November 2016, Pages 708-715
نویسندگان
, , , , ,