کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7377377 1480111 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Toward edge minability for role mining in bipartite networks
ترجمه فارسی عنوان
به سمت ممانعت از لبه برای معدن نقش در شبکه های دو طرفه
کلمات کلیدی
ممانعت از لبه، معدنکاری، شبکه دو طرفه، مدیریت اطلاعات،
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات فیزیک ریاضی
چکیده انگلیسی
Bipartite network models have been extensively used in information security to automatically generate role-based access control (RBAC) from dataset. This process is called role mining. However, not all the topologies of bipartite networks are suitable for role mining; some edges may even reduce the quality of role mining. This causes unnecessary time consumption as role mining is NP-hard. Therefore, to promote the quality of role mining results, the capability that an edge composes roles with other edges, called the minability of edge, needs to be identified. We tackle the problem from an angle of edge importance in complex networks; that is an edge easily covered by roles is considered to be more important. Based on this idea, the k-shell decomposition of complex networks is extended to reveal the different minability of edges. By this way, a bipartite network can be quickly purified by excluding the low-minability edges from role mining, and thus the quality of role mining can be effectively improved. Extensive experiments via the real-world datasets are conducted to confirm the above claims.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 462, 15 November 2016, Pages 274-286
نویسندگان
, , , , ,