کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7380541 | 1480164 | 2014 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Short note on the emergence of fractional kinetics
ترجمه فارسی عنوان
یادداشت کوتاه در ظهور سینتیک های کسری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
فیزیک ریاضی
چکیده انگلیسی
In the present Short Note an idea is proposed to explain the emergence and the observation of processes in complex media that are driven by fractional non-Markovian master equations. Particle trajectories are assumed to be solely Markovian and described by the Continuous Time Random Walk model. But, as a consequence of the complexity of the medium, each trajectory is supposed to scale in time according to a particular random timescale. The link from this framework to microscopic dynamics is discussed and the distribution of timescales is computed. In particular, when a stationary distribution is considered, the timescale distribution is uniquely determined as a function related to the fundamental solution of the space-time fractional diffusion equation. In contrast, when the non-stationary case is considered, the timescale distribution is no longer unique. Two distributions are here computed: one related to the M-Wright/Mainardi function, which is Green's function of the time-fractional diffusion equation, and another related to the Mittag-Leffler function, which is the solution of the fractional-relaxation equation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Physica A: Statistical Mechanics and its Applications - Volume 409, 1 September 2014, Pages 29-34
Journal: Physica A: Statistical Mechanics and its Applications - Volume 409, 1 September 2014, Pages 29-34
نویسندگان
Gianni Pagnini,