کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
744145 | 894381 | 2011 | 8 صفحه PDF | دانلود رایگان |

An amperometric oxalate biosensor using nanohybrid film of multi-walled carbon nanotubes (MWCNTs) and gold colloidal nanoparticles (GNPs) via carbodiimide chemistry by forming amide linkages between carboxylic acid groups on the CNTs and amine residues of cysteamine self-assembled monolayer (SAM) has been prepared. The c-MWCNTs were immobilized on the gold (Au) electrode and characterized by FTIR. The morphologies of the c-MWCNT/Au and GNPs/MWCNT/Au electrodes were investigated by scanning electron microscopy (SEM) and the electrochemical performance of the Au, c-MWCNT/Au and GNPs/c-MWCNT/Au electrodes were also studied amperometrically. The Cl− and NO3− insensitive oxalate oxidase from grain sorghum was finally immobilized on this electrode. The influence of pH, temperature and oxalate concentration on electrode activity was studied. The electrode showed optimum response within 7 s. The electrocatalytic response showed a linear dependence on the oxalic acid concentration ranging from 1 to 800 μM with a detection limit of 1 μM. The Km value for the oxalic acid sensor was 444.44 μM. The enzyme electrode retained 30% of its initial activity after 5 months, when stored at 4 °C. The electrode was employed for measurement of oxalic acid in serum, urine and foodstuffs.
Journal: Sensors and Actuators B: Chemical - Volume 155, Issue 2, 20 July 2011, Pages 796–803