کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
745975 | 894438 | 2011 | 6 صفحه PDF | دانلود رایگان |

We present the fabrication and characterization of new type of flexible gas sensors, composed mainly of a bottom ZnO conductive layer on metal foil, vertically aligned ZnO nanorod channel, and graphene-based top conductive electrode. Multiple cycling tests demonstrated the ZnO nanorods (NRs) and graphene (Gr) hybrid architectures accommodated the flexural deformation without mechanical or electrical failure for bending radius below 0.8 cm under the repeated bending and releasing up to 100 times. In addition, the hybrid architectures fabricated on glass substrate showed good optical transmittance larger than ∼70% for visible light, indicating potential application in transparent devices. Furthermore, our gas sensors demonstrated the ppm level detection of ethanol gas vapor with the sensitivity (resistance in air/resistance in target gas) as high as ∼9 for 10 ppm ethanol.
Journal: Sensors and Actuators B: Chemical - Volume 155, Issue 1, 5 July 2011, Pages 264–269