کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7495794 | 1485753 | 2018 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Bayesian latent process spatiotemporal regression model for areal count data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم پزشکی و سلامت
پزشکی و دندانپزشکی
سیاست های بهداشت و سلامت عمومی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Model-based approaches for the analysis of areal count data are commonplace in spatiotemporal analysis. In Bayesian hierarchical models, a latent process is incorporated in the mean function to account for dependence in space and time. Typically, the latent process is modelled using a conditional autoregressive (CAR) prior. The aim of this paper is to offer an alternative approach to CAR-based priors for modelling the latent process. The proposed approach is based on a spatiotemporal generalization of a latent process Poisson regression model developed in a time series setting. Spatiotemporal dependence in the autoregressive model for the latent process is modelled through its transition matrix, with a structured covariance matrix specified for its error term. The proposed model and its parameterizations are fitted in a Bayesian framework implemented via MCMC techniques. Our findings based on real-life examples show that the proposed approach is at least as effective as CAR-based models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Spatial and Spatio-temporal Epidemiology - Volume 25, June 2018, Pages 25-37
Journal: Spatial and Spatio-temporal Epidemiology - Volume 25, June 2018, Pages 25-37
نویسندگان
C. Edson Utazi, Emmanuel O. Afuecheta, C. Christopher Nnanatu,