کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7496325 | 1485777 | 2018 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modelling Spatial Compositional Data: Reconstructions of past land cover and uncertainties
ترجمه فارسی عنوان
مدلسازی اطلاعات مختلط فضایی: بازسازی پوششهای زمین گذشته و عدم اطمینان
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
علوم زمین و سیاره ای (عمومی)
چکیده انگلیسی
In this paper we construct a hierarchical model for spatial compositional data which is used to reconstruct past land-cover compositions (in terms of coniferous forest, broadleaved forest, and unforested/open land) for five time periods during the past 6000 years over Europe. The model consists of a Gaussian Markov Random Field (GMRF) with Dirichlet observations. A block updated Markov chain Monte Carlo (MCMC), including an adaptive Metropolis adjusted Langevin step, is used to estimate model parameters. The sparse precision matrix in the GMRF provides computational advantages leading to a fast MCMC algorithm. Reconstructions are obtained by combining pollen-based estimates of vegetation cover at a limited number of locations with scenarios of past deforestation and output from a dynamic vegetation model. To evaluate uncertainties in the predictions a novel way of constructing joint confidence regions for the entire composition at each prediction location is proposed. The hierarchical model's ability to reconstruct past land cover is evaluated through cross validation for all time periods, and by comparing reconstructions for the recent past to a present day European forest map. The evaluation results are promising, and the model is able to capture known structures in past land-cover compositions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Spatial Statistics - Volume 24, April 2018, Pages 14-31
Journal: Spatial Statistics - Volume 24, April 2018, Pages 14-31
نویسندگان
Behnaz Pirzamanbein, Johan Lindström, Anneli Poska, Marie-José Gaillard,