کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
752222 1462333 2014 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Preservation of quadratic stability under various common approximate discretization methods
ترجمه فارسی عنوان
حفظ ثبات درجه دوم تحت روش های متداول تقریبی تقریبا معمول
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
چکیده انگلیسی

In this paper we prove the following result. If AA is a Hurwitz matrix and ff is a rational function that maps the open left half of the complex plane into the open unit disc, then any Hermitian matrix P>0P>0 which is a Lyapunov matrix for AA (that is, PA+A∗P<0PA+A∗P<0) is also a Stein matrix for f(A)f(A) (that is, f(A)∗Pf(A)−P<0f(A)∗Pf(A)−P<0).We use this result to prove that all A-stable approximations for the matrix exponential preserve quadratic Lyapunov functions for any stable linear system. The importance of this result is that it implies that common quadratic Lyapunov functions for switched linear systems are preserved for all step sizes when discretising quadratically stable switched systems using A-stable approximations.Examples are given to illustrate our results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Systems & Control Letters - Volume 63, January 2014, Pages 68–72
نویسندگان
, , ,