کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
752292 895408 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Construction of control Lyapunov functions for damping stabilization of control affine systems
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Construction of control Lyapunov functions for damping stabilization of control affine systems
چکیده انگلیسی

This paper considers the stabilization of nonlinear control affine systems that satisfy Jurdjevic–Quinn conditions. We first obtain a differential one-form associated to the system by taking the interior product of a non vanishing two-form with respect to the drift vector field. We then construct a homotopy operator on a star-shaped region centered at a desired equilibrium point that decomposes the system into an exact part and an anti-exact one. Integrating the exact one-form, we obtain a locally-defined dissipative potential that is used to generate the damping feedback controller. Applying the same decomposition approach on the entire control affine system under damping feedback, we compute a control Lyapunov function for the closed-loop system. Under Jurdjevic–Quinn conditions, it is shown that the obtained damping feedback is locally stabilizing the system to the desired equilibrium point provided that it is the maximal invariant set for the controlled dynamics. The technique is also applied to construct damping feedback controllers for the stabilization of periodic orbits. Examples are presented to illustrate the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Systems & Control Letters - Volume 62, Issue 11, November 2013, Pages 1009–1017
نویسندگان
, ,