کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7546490 1489633 2018 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
High-dimensional multivariate posterior consistency under global-local shrinkage priors
ترجمه فارسی عنوان
هماهنگی خلفی چند بعدی با ابعاد بزرگ در زیر انقباض های جهانی محلی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
چکیده انگلیسی
We consider sparse Bayesian estimation in the classical multivariate linear regression model with p regressors and q response variables. In univariate Bayesian linear regression with a single response y, shrinkage priors which can be expressed as scale mixtures of normal densities are popular for obtaining sparse estimates of the coefficients. In this paper, we extend the use of these priors to the multivariate case to estimate a p×q coefficients matrix B. We derive sufficient conditions for posterior consistency under the Bayesian multivariate linear regression framework and prove that our method achieves posterior consistency even when p>n and even when p grows at nearly exponential rate with the sample size. We derive an efficient Gibbs sampling algorithm and provide the implementation in a comprehensive R package called MBSP. Finally, we demonstrate through simulations and data analysis that our model has excellent finite sample performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 167, September 2018, Pages 157-170
نویسندگان
, ,