کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7546738 1489636 2018 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantile regression for additive coefficient models in high dimensions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز عددی
پیش نمایش صفحه اول مقاله
Quantile regression for additive coefficient models in high dimensions
چکیده انگلیسی
In this paper, we consider quantile regression in additive coefficient models (ACM) with high dimensionality under a sparsity assumption and approximate the additive coefficient functions by B-spline expansion. First, we consider the oracle estimator for quantile ACM when the number of additive coefficient functions is diverging. Then we adopt the SCAD penalty and investigate the non-convex penalized estimator for model estimation and variable selection. Under some regularity conditions, we prove that the oracle estimator is a local solution of the SCAD penalized quantile regression problem. Simulation studies and an application to a genome-wide association study show that the proposed method yields good numerical results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Multivariate Analysis - Volume 164, March 2018, Pages 54-64
نویسندگان
, ,