| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 7550399 | 1489926 | 2018 | 24 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												On the block counting process and the fixation line of the Bolthausen-Sznitman coalescent
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													ریاضیات (عمومی)
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												The block counting process and the fixation line of the Bolthausen-Sznitman coalescent are analyzed. It is shown that these processes, properly scaled, converge in the Skorohod topology to the Mittag-Leffler process and to Neveu's continuous-state branching process respectively as the initial state tends to infinity. Strong relations to Siegmund duality, Mehler semigroups and self-decomposability are pointed out. Furthermore, spectral decompositions for the generators and transition probabilities of the block counting process and the fixation line of the Bolthausen-Sznitman coalescent are provided leading to explicit expressions for functionals such as hitting probabilities and absorption times.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Stochastic Processes and their Applications - Volume 128, Issue 3, March 2018, Pages 939-962
											Journal: Stochastic Processes and their Applications - Volume 128, Issue 3, March 2018, Pages 939-962
نویسندگان
												Jonas Kukla, Martin Möhle,