کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
755984 896097 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On Lagrangians and Hamiltonians of some fourth-order nonlinear Kudryashov ODEs
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
On Lagrangians and Hamiltonians of some fourth-order nonlinear Kudryashov ODEs
چکیده انگلیسی

We derive the Lagrangians of the reduced fourth-order ordinary differential equations studied by Kudryashov, when they satisfy the conditions stated by Fels [Fels ME, The inverse problem of the calculus of variations for scalar fourth-order ordinary differential equations. Trans Am Math Soc 1996;348:5007–29] using Jacobi’s last multiplier technique. In addition the Hamiltonians of these equations are derived via Jacobi–Ostrogradski’s theory. In particular, we compute the Lagrangians and Hamiltonians of fourth-order Kudryashov equations which pass the Painlevé test.

Research highlights
► The Jacobi Last Multiplier is a useful tool for deriving the Lagrangian of such equations provided the Fels conditions are satisfied.
► Kudryashov derived two hierarchies of fourth-order ODEs which pass the Painlevé test.
► The Hamiltonization of such equations is considered using Ostrogradski’s theory.
► These contributes to the understanding of higher-order ODEs in general.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 16, Issue 10, October 2011, Pages 3914–3922
نویسندگان
, ,