کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
758033 1462613 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Two-dimensional Amari neural field model with periodic microstructure: Rotationally symmetric bump solutions
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Two-dimensional Amari neural field model with periodic microstructure: Rotationally symmetric bump solutions
چکیده انگلیسی


• We consider a two-dimensional Amari model with periodic microstructure.
• We investigate existence and stability of rotationally symmetric bump solutions.
• We illustrate the theory with an example involving the Mexican hat connectivity function.

We investigate existence and stability of rotationally symmetric bump solutions to a homogenized two-dimensional Amari neural field model with periodic micro-variations built in the connectivity strength and by approximating the firing rate function with unit step function. The effect of these variations is parameterized by means of one single parameter, called the degree of heterogeneity. The bumps solutions are assumed to be independent of the micro-variable. We develop a framework for study existence of bumps as a function of the degree of heterogeneity as well as a stability method for the bumps. The former problem is based on the pinning function technique while the latter one uses spectral theory for Hilbert–Schmidt integral operators. We demonstrate numerically these procedures for the case when the connectivity kernel is modeled by means of a Mexican hat function. In this case the generic picture consists of one narrow and one broad bump. The radius of the narrow bumps increases with the heterogeneity. For the broad bumps the radius increases for small and moderate values of the activation threshold while it decreases for large values of this threshold. The stability analysis reveals that the narrow bumps remain unstable while the broad bumps are destabilized when the degree of heterogeneity exceeds a certain critical value.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 32, March 2016, Pages 81–88
نویسندگان
, , ,