کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
758318 1462621 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Volterra-type Lyapunov functions for fractional-order epidemic systems
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Volterra-type Lyapunov functions for fractional-order epidemic systems
چکیده انگلیسی


• We prove an lemma to Caputo fractional derivatives of Lyapunov functions.
• We estimate the derivatives in order 0 < α < 1 to Volterra-type functions.
• We prove the uniform asymptotic stability of some epidemic systems.
• We illustrate our theoretical results with numerical simulations.
• Our method could be useful in the stability analysis of epidemic systems.

In this paper we prove an elementary lemma which estimates fractional derivatives of Volterra-type Lyapunov functions in the sense Caputo when α∈(0,1)α∈(0,1). Moreover, by using this result, we study the uniform asymptotic stability of some Caputo-type epidemic systems with a pair of fractional-order differential equations. These epidemic systems are the Susceptible–Infected–Susceptible (SIS), Susceptible–Infected–Recovered (SIR) and Susceptible–Infected–Recovered–Susceptible (SIRS) models and Ross–Macdonald model for vector-borne diseases. We show that the unique endemic equilibrium is uniformly asymptotically stable if the basic reproductive number is greater than one. We illustrate our theoretical results with numerical simulations using the Adams–Bashforth–Moulton scheme implemented in the fde12 Matlab function.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 24, Issues 1–3, July 2015, Pages 75–85
نویسندگان
,