کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
758988 896458 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a cubic Lyapunov system
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a cubic Lyapunov system
چکیده انگلیسی

In the present paper, for the three-order nilpotent critical point of a cubic Lyapunov system, the center problem and bifurcation of limit cycles are investigated. With the help of computer algebra system-MATHEMATICA, the first 7 quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact of there exist 7 small amplitude limit cycles created from the three-order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for cubic Lyapunov systems.


► We give center conditions and 7 limit cycles at three-order nilpotent critical point.
► The first 7 quasi-Lyapunov constants are deduced by MATHEMATICA.
► Sufficiency and necessity to be a center are proved.
► We give a lower bound of cyclicity of three-order nilpotent critical point.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 17, Issue 1, January 2012, Pages 292–304
نویسندگان
, , ,