کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7592711 1492112 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-destructive prediction of thiobarbituric acid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Non-destructive prediction of thiobarbituric acid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging
چکیده انگلیسی
This study examined the potential of hyperspectral imaging (HSI) for rapid prediction of 2-thiobarbituric acid reactive substances (TBARS) content in chicken meat during refrigerated storage. Using the spectral data and the reference values of TBARS, a partial least square regression (PLSR) model was established and yielded acceptable results with regression coefficients in prediction (Rp) of 0.944 and root mean squared errors estimated by prediction (RMSEP) of 0.081. To simplify the calibration model, ten optimal wavelengths were selected by successive projections algorithm (SPA). Then, a new SPA-PLSR model based on the selected wavelengths was built and showed good results with Rp of 0.801 and RMSEP of 0.157. Finally, an image algorithm was developed to achieve image visualization of TBARS values in some representative samples. The encouraging results of this study demonstrated that HSI is suitable for determination of TBARS values for freshness evaluation in chicken meat.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Food Chemistry - Volume 179, 15 July 2015, Pages 175-181
نویسندگان
, , , , , ,