کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7593396 | 1492115 | 2015 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Estimating cocoa bean parameters by FT-NIRS and chemometrics analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Rapid analysis of cocoa beans is an important activity for quality assurance and control investigations. In this study, Fourier transform near infrared spectroscopy (FT-NIRS) and chemometric techniques were attempted to estimate cocoa bean quality categories, pH and fermentation index (FI). The performances of the models were optimised by cross-validation and examined by identification rate (%), correlation coefficient (Rpre) and root mean square error of prediction (RMSEP) in the prediction set. The optimal identification model by back propagation artificial neural network (BPANN) was 99.73% at 5 principal components. The efficient variable selection model derived by synergy interval back propagation artificial neural network regression (Si-BPANNR) was superior for pH and FI estimation. Si-BPANNR model for pH was Rpre = 0.98 and RMSEP = 0.06, while for FI was Rpre = 0.98 and RMSEP = 0.05. The results demonstrated that FT-NIRS together with BPANN and Si-BPANNR model could successfully be used for cocoa beans examination.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Food Chemistry - Volume 176, 1 June 2015, Pages 403-410
Journal: Food Chemistry - Volume 176, 1 June 2015, Pages 403-410
نویسندگان
Ernest Teye, Xingyi Huang, Livingstone K. Sam-Amoah, Jemmy Takrama, Daniel Boison, Francis Botchway, Francis Kumi,