کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
759384 896476 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ibragimov-type invariants for a system of two linear parabolic equations
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Ibragimov-type invariants for a system of two linear parabolic equations
چکیده انگلیسی

We obtain new semi-invariants for a system of two linear parabolic type partial differential equations (PDEs) in two independent variables under equivalence transformations of the dependent variables only. This is achieved for a class of systems of two linear parabolic type PDEs that correspond to a scalar complex linear (1 + 1) parabolic equation. The complex transformations of the dependent variables which map the complex scalar linear parabolic PDE to itself provide us with real transformations that map the corresponding system of linear parabolic type PDEs to itself with different coefficients in general. The semi-invariants deduced for this class of systems of two linear parabolic type equations correspond to the complex Ibragimov invariants of the complex scalar linear parabolic equation. We also look at particular cases of the system of parabolic type equations when they are uncoupled or coupled in a special manner. Moreover, we address the inverse problem of when systems of linear parabolic type equations arise from analytic continuation of a scalar linear parabolic PDE. Examples are given to illustrate the method implemented.


► Complex symmetry analysis is used to study systems of partial differential equations.
► A scalar complex linear parabolic equation leads to a linear parabolic type system.
► New semi-invariants for these systems of partial differential equations are obtained.
► These semi-invariants correspond to complex semi-invariants of the base PDE.
► Special coupled and uncoupled cases of this class of systems are also presented.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 17, Issue 8, August 2012, Pages 3140–3147
نویسندگان
, , ,