کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
760008 | 896504 | 2007 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Optimal parameter estimation for Muskingum model based on Gray-encoded accelerating genetic algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In order to reduce the computational amount and improve the computational precision for parameter optimization of Muskingum model, a new algorithm, Gray-encoded accelerating genetic algorithm (GAGA) is proposed. With the shrinking of searching range, the method gradually directs to an optimal result with the excellent individuals obtained by Gray genetic algorithm (GGA). The global convergence is analyzed for the new genetic algorithm. Its efficiency is verified by application of Muskingum model. Compared with the nonlinear programming methods, least residual square method and the test method, GAGA has higher precision. And compared with GGA and BGA (binary-encoded genetic algorithm), GAGA has rapider convergent speed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 12, Issue 5, August 2007, Pages 849–858
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 12, Issue 5, August 2007, Pages 849–858
نویسندگان
Jianjun Chen, Xiaohua Yang,