کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
760177 896509 2007 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The second law of thermodynamics and multifractal distribution functions: Bin counting, pair correlations, and the Kaplan–Yorke conjecture
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
The second law of thermodynamics and multifractal distribution functions: Bin counting, pair correlations, and the Kaplan–Yorke conjecture
چکیده انگلیسی

We explore and compare numerical methods for the determination of multifractal dimensions for a doubly-thermostatted harmonic oscillator. The equations of motion are continuous and time-reversible. At equilibrium the distribution is a four-dimensional Gaussian, so that all the dimension calculations can be carried out analytically. Away from equilibrium the distribution is a surprisingly isotropic multifractal strange attractor, with the various fractal dimensionalities in the range 1 < D < 4. The attractor is relatively homogeneous, with projected two-dimensional information and correlation dimensions which are nearly independent of direction. Our data indicate that the Kaplan–Yorke conjecture (for the information dimension) fails in the full four-dimensional phase space. We also find no plausible extension of this conjecture to the projected fractal dimensions of the oscillator. The projected growth rate associated with the largest Lyapunov exponent is negative in the one-dimensional coordinate space.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 12, Issue 2, March 2007, Pages 214–231
نویسندگان
, , , ,