کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
761119 | 1462898 | 2012 | 12 صفحه PDF | دانلود رایگان |

Currently, focused efforts are being made to determine the influence of windows on the energy consumption and economy of high-rise buildings. Certain window designs and appropriate glazing systems reduce building energy consumption for heating and cooling and contribute to building economy. This paper addresses double-glazed window units that are composed of tinted glass; clear reflective glass; low emissivity (low-e) glass; and smart glass (one surface consists of a high-performance, heat-reflective glass, and other surface has a low-emissivity coated). These materials reduce the heating and cooling loads of buildings by providing solar control and heat conservation. The aim of this study was to investigate the effects of these alternative units, rather than readily available double-glazed units, in two types of flats. The flats have the same construction and operating system, but they have different plan types with regard to building energy consumption and building economy as it relates to life cycle cost analysis. For this study, we selected buildings in Trabzon, in Climate Region II of Turkey, due to its moderate-humid climate. F- and C-type high-rise residential blocks, with flats composed of two to three bedrooms, constructed by the Republic of Turkey’s Prime Ministry Housing Development Administration of Turkey (TOKİ) are used as models for the simulation. The flat plans in these blocks are modeled using DesignBuilder v.1.8 energy simulation software. The simulation results show that smart-glazed units and those with low emissivity glazing are the most efficient alternatives with regard to building energy consumption and economy.
► We investigated energy and economy efficiency of window alternatives in Trabzon.
► Energy consumptions of eight window alternatives were simulated and discussed.
► Window alternatives’s life cycle costs were calculated and compared.
► We suggested appropriate energy and economy efficient window alternatives.
► The study defines useful guidelines to select appropriate window alternatives.
Journal: Energy Conversion and Management - Volume 64, December 2012, Pages 170–181