کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
763590 1462866 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Aggregated wind power generation probabilistic forecasting based on particle filter
ترجمه فارسی عنوان
پیش بینی احتمال احتمالی تولید انرژی بادی بر اساس فیلتر ذرات
کلمات کلیدی
پیش بینی احتمالی، تولید برق باد جمع شده، پیش بینی آب و هوا عددی، فیلتر ذرات، برآورد تراکم هسته
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
چکیده انگلیسی


• A new method for probabilistic forecasting of aggregated wind power generation.
• A dynamic system is established based on a numerical weather prediction model.
• The new method handles the non-Gaussian and time-varying wind power uncertainties.
• Particle filter is applied to forecast predictive densities of wind generation.

Probability distribution of aggregated wind power generation in a region is one of important issues for power system daily operation. This paper presents a novel method to forecast the predictive densities of the aggregated wind power generation from several geographically distributed wind farms, considering the non-Gaussian and non-stationary characteristics in wind power uncertainties. Based on a mesoscale numerical weather prediction model, a dynamic system is established to formulate the relationship between the atmospheric and near-surface wind fields of geographically distributed wind farms. A recursively backtracking framework based on the particle filter is applied to estimate the atmospheric state with the near-surface wind power generation measurements, and to forecast the possible samples of the aggregated wind power generation. The predictive densities of the aggregated wind power generation are then estimated based on these predicted samples by a kernel density estimator. In case studies, the new method presented is tested on a 9 wind farms system in Midwestern United States. The testing results that the new method can provide competitive interval forecasts for the aggregated wind power generation with conventional statistical based models, which validates the effectiveness of the new method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Conversion and Management - Volume 96, 15 May 2015, Pages 579–587
نویسندگان
, , ,