کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
763718 | 1462862 | 2015 | 10 صفحه PDF | سفارش دهید | دانلود رایگان |
• Highly dispersed GNP–Ag nanofluid is prepared with the functionalization method.
• Thermophysical properties of hybrid nanofluid is highly improved.
• A significant enhancement of heat transfer performance is observed.
• Cluster of empirical correlation introduced for Nusselt number and friction factor.
In the present experimental work, a new synthesis method is introduced for decoration of silver on the functionalized graphene nanoplatelets (GNP–Ag) and preparation of nanofluids is reported. The thermo-physical properties, heat transfer performance and friction factor for fully developed turbulent flow of GNP–Ag/water nanofluids flowing through a circular tube at a constant heat flux were investigated. GNP–Ag uniform nanocomposite was produced from a simple chemical reaction procedure, which includes acid treatment for functionalization of GNP. The surface characterization was performed by various techniques such as XRD, FESEM, TEM and Raman. The GNP–Ag nanofluids were prepared by dispersing the nanocomposite in distilled water without the assistance of a surfactant and/or ultrasonication. The prepared nanofluids were found to be stable and no sedimentation was observed for a long time. The experimental data for GNP–Ag nanofluids were shown improvements of effective thermal conductivity and heat transfer efficiency in comparison with the corresponding to the base-fluid. The amount of enhancement was a function of temperature and weight concentration of nanoparticles. Maximum enhancement of Nusselt number was 32.7% with a penalty of 1.08 times increase in the friction factor for the weight concentration of 0.1% at a Reynolds number of 17,500 compared to distilled water. Improved empirical correlations were proposed based on the experimental data for evaluation of Nusselt number and friction factor.
Journal: Energy Conversion and Management - Volume 100, August 2015, Pages 419–428