کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7646 559 2011 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration
چکیده انگلیسی

In the degenerative disc, overproduction of reactive oxygen species (ROS) involves in apoptosis and senescence of nucleus pulposus (NP) cells that could accelerate the degenerative process. Ferulic acid (FA) has been reported to have an excellent antioxidant property. In the study, injectable thermosensitive chitosan/gelatin/glycerol phosphate (C/G/GP) hydrogel was applied as a controlled release system for FA delivery. The study was aimed to evaluate possible therapeutic effects of FA-incorporated C/G/GP hydrogel on hydrogen peroxide (H2O2)-induced oxidative stress NP cells. The results showed that the release of FA from C/G/GP hydrogel could decrease the H2O2-induced oxidative stress. Post-treatment of FA-incorporated C/G/GP hydrogel on H2O2-induced oxidative stress NP cells showed up-regulation of Aggrecan and type II collagen and down-regulation of MMP-3 in mRNA level. The results of sulfated-glycosaminoglycans (GAGs) to DNA ratio and alcian blue staining revealed that the GAGs production of H2O2-induced oxidative stress NP cells could reach to normal level. The results of caspase-3 activity and TUNEL staining indicated that FA-incorporated C/G/GP hydrogel decreased the apoptosis of H2O2-induced oxidative stress NP cells. The results suggested that the C/G/GP hydrogel was very suitable for sustained delivery of FA. The FA-incorporated C/G/GP hydrogel would be used to treat the degenerative disc in the early stage before it developed into the latter irreversible stages.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 32, Issue 29, October 2011, Pages 6953–6961
نویسندگان
, , ,