کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
767489 | 897184 | 2009 | 8 صفحه PDF | دانلود رایگان |

An investigation of the nonlinear dynamics of a heart model is presented. The model compartmentalizes the heart into one part that beats autonomously (the x oscillator), representing the pacemaker or SA node, and a second part that beats only if excited by a signal originating outside itself (the y oscillator), representing typical cardiac tissue. Both oscillators are modeled by piecewise linear differential equations representing relaxation oscillators in which the fast time portion of the cycle is modeled by a jump. The model assumes that the x oscillator drives the y oscillator with coupling constant αα. As αα decreases, the regular behavior of y oscillator deteriorates, and is found to go through a series of bifurcations. The irregular behavior is characterized as involving a large amplitude cycle followed by a number n of small amplitude cycles. We compute critical bifurcation values of the coupling constant, αnαn, using both numerical methods as well as perturbations.
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 14, Issue 11, November 2009, Pages 3707–3714