کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
767768 897211 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic solutions and stability analysis for generalized non-homogeneous Mathieu equation
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Asymptotic solutions and stability analysis for generalized non-homogeneous Mathieu equation
چکیده انگلیسی

The asymptotic solutions and transition curves for the generalized form of the non-homogeneous Mathieu differential equation are investigated in this paper. This type of governing differential equation of motion arises from the dynamic behavior of a pendulum undergoing a butterfly-type end support motion. The strained parameter technique is used to obtain periodic asymptotic solutions. The transition curves for some special cases are presented and their corresponding periodic solutions with the periods of 2π and 4π are evaluated. The stability analyses of those transition curves in the ε–δ plane are carried out, analytically, using the multiple scales method. The numerical simulations for some typical points in the ε–δ plane are performed and the dynamic characteristics of the resulting phase plane trajectories are discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Communications in Nonlinear Science and Numerical Simulation - Volume 12, Issue 1, February 2007, Pages 58–71
نویسندگان
, , ,