کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7725891 1497856 2018 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm
ترجمه فارسی عنوان
یک رویکرد جدید از تخمین سلامت باتری با استفاده از الگوریتم بهینه سازی هوش مصنوعی
کلمات کلیدی
وضعیت باتری باتری، الگوریتم ژنتیک بهینه سازی ذرات، فیلتر ذرات، مدل بسته باتری،
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
چکیده انگلیسی
An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack make the battery pack SOH estimation difficult. In this paper, the battery pack SOH is defined as the change of battery pack maximum energy storage. It contains all the cells' information including battery capacity, the relationship between state of charge (SOC) and open circuit voltage (OCV), and battery inconsistency. To predict the battery pack SOH, the method of particle swarm optimization-genetic algorithm is applied in battery pack model parameters identification. Based on the results, a particle filter is employed in battery SOC and OCV estimation to avoid the noise influence occurring in battery terminal voltage measurement and current drift. Moreover, a recursive least square method is used to update cells' capacity. Finally, the proposed method is verified by the profiles of New European Driving Cycle and dynamic test profiles. The experimental results indicate that the proposed method can estimate the battery states with high accuracy for actual operation. In addition, the factors affecting the change of SOH is analyzed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 376, 1 February 2018, Pages 191-199
نویسندگان
, , , ,