کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
773247 1462924 2004 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance analysis of ejector absorption heat pump using ozone safe fluid couple through artificial neural networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
پیش نمایش صفحه اول مقاله
Performance analysis of ejector absorption heat pump using ozone safe fluid couple through artificial neural networks
چکیده انگلیسی

Thermodynamic analysis of absorption thermal systems is too complex because the analytic functions calculating the thermodynamic properties of fluid couples involve the solution of complex differential equations and simulation programs. This study aims at easing this complex situation and consists of three cases: (i) A special ejector, located at the absorber inlet, instead of the common location at the condenser inlet, to increase overall performance was used in the ejector absorption heat pump (EAHP). The ejector has two functions: Firstly, it aids the pressure recovery from the evaporator and then upgrades the mixing process and pre-absorption by the weak solution of the methanol coming from the evaporator. (ii) Use of artificial neural networks (ANNs) has been proposed to determine the properties of the liquid and two phase boiling and condensing of an alternative working fluid couple (methanol/LiCl), which does not cause ozone depletion. (iii) A comparative performance study of the EAHP was performed between the analytic functions and the values predicted by the ANN for the properties of the couple. The back propagation learning algorithm with three different variants and logistic sigmoid transfer function were used in the network. In order to train the neural network, limited experimental measurements were used as training and test data. In the input layer, there are temperature, pressure and concentration of the couples. Specific volume is in the output layer. After training, it was found that the maximum error was less than 3%, the average error was less than 1.2% and the R2 values were about 0.9999. Additionally, in comparison of the analysis results between analytic equations obtained by using experimental data and by means of the ANN, the deviations of the refrigeration effectiveness of the system for cooling (COPr), exergetic coefficient of performance of the system for cooling (ECOPr) and circulation ratio (F) for all working temperatures were found to be less than 1.7%, 5.1%, and 1.9%, respectively. Deviations for COPr, ECOPr and F at a generator temperature of ∼90 °C (cut off temperature) at which the coefficient of performance of the system is maximum are 0.9%, 1.8%, and 0.1%, respectively, for other working temperatures. When this system was used for heating, similar deviations were obtained. As seen from the results obtained, the calculated thermodynamic properties are obviously within acceptable uncertainties. The results showed that the use of ANNs for determination of thermodynamic properties is acceptable in design of the EAHP.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy Conversion and Management - Volume 45, Issues 13–14, August 2004, Pages 2233–2253
نویسندگان
, , ,