کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7739694 1497991 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of local gas diffusion layer gas permeability variations on spatial proton exchange membrane fuel cells performance
ترجمه فارسی عنوان
اثرات تغییرات نفوذپذیری گاز لایه دیافراگم محلی بر عملکرد سلول های سوختی غشای تبادل پروتون
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
چکیده انگلیسی
The effects of local gas diffusion layer (GDL) gas permeability variation and its location on spatial and overall proton exchange membrane fuel cell (PEMFC) performance were studied using a segmented cell approach. Variations in the physical and chemical parameters of the main membrane electrode assembly's (MEA) components (e.g., the membrane, electrode, and GDL) are considered defects and might negatively affect fuel cell performance. An artificial GDL defect was introduced by exchanging a standard (or intact) cathode GDL at one segment (segment 4 or 9) with a defective GDL. The standard and defective cathode GDLs had different through-plane gas permeabilities, while values were similar for in-plane permeability and some other structural parameters. The effects from a defective GDL were observed at a high current. Introducing a highly permeable GDL as a defect increased local performance due to a decrease in mass-transfer overpotential. For a defective GDL with lower permeability than the standard GDL, a local performance decrease was observed because mass-transfer losses increased. Simultaneously, downstream segment performance improved, which might be due to changes in water management. Defect localization at the cell outlet resulted in the detection of the defect at a lower current density compared with localization at the cell inlet. Spatial polarization curves (VI) and electrochemical impedance spectroscopy (EIS) facilitated detection and localization of GDL defects. Thus it was demonstrated that the local GDL anomalies are detectable by the segmented cell system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 241, 1 November 2013, Pages 597-607
نویسندگان
, , ,