کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7888862 1509795 2018 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of Ni diffusion into BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolyte during high temperature co-sintering in anode-supported solid oxide fuel cells
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Effect of Ni diffusion into BaZr0.1Ce0.7Y0.1Yb0.1O3−δ electrolyte during high temperature co-sintering in anode-supported solid oxide fuel cells
چکیده انگلیسی
Diffusion behavior of Ni during high temperature co-sintering was quantitatively investigated for anode-supported solid oxide fuel cells (SOFCs) that had BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (BZCYYb) proton-conducting electrolyte and NiO-BZCYYb anode. Although diffused Ni in such SOFCs effectively acts as a sintering aid to densify the BZCYYb electrolyte layer, it often negatively affects the electrolyte conductivity. In the present study, field emission electron probe microanalysis (with wavelength dispersive X-ray spectroscopy) clearly revealed that Ni diffused into the BZCYYb electrolyte layer, and that the amount of diffused Ni increased with increasing co-sintering temperature. In particular, relatively high Ni concentration within the electrolyte layer was observed near the electrolyte/anode interface, e.g., approximately 1.5 and 2.8 wt% at co-sintering temperature of 1300 and 1400 °C, respectively. Electrochemical measurements showed that, compared with the lower co-sintering temperatures (1300-1350 °C), the highest co-sintering temperature (1400 °C) led to the highest ohmic resistance because of lower electrolyte conductivity. These results suggest that high co-sintering temperature causes excessive Ni diffusion into the BZCYYb electrolyte layer, thus degrading the intrinsic electrolyte conductivity and consequently degrading the SOFC performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ceramics International - Volume 44, Issue 3, 15 February 2018, Pages 3134-3140
نویسندگان
, , , , , ,