کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7895483 | 1510006 | 2014 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Prediction of crack growth rate in Type 304 stainless steel using artificial neural networks and the coupled environment fracture model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A crack growth rate (CGR) database has been developed to train an artificial neural network (ANN). The trained ANN and the extended coupled environment fracture model (CEFM) were used to predict the CGR in Type 304SS as a function of each of the principal variables of the system. The ANN revealed the underlying relationships that map the dependencies of the CGR on the various input independent variables. A sensitivity analysis revealed that IGSCC in sensitized Type 304SS in high temperature aqueous environments is primarily electrochemical in character. Comparison between the ANN-predicted CGR and CEFM-predicted CGR reveal good agreement.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Corrosion Science - Volume 89, December 2014, Pages 69-80
Journal: Corrosion Science - Volume 89, December 2014, Pages 69-80
نویسندگان
Jiangbo Shi, Jihui Wang, Digby D. Macdonald,