کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7936 570 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The role of reactive oxygen species and hemeoxygenase-1 expression in the cytotoxicity, cell cycle alteration and apoptosis of dental pulp cells induced by BisGMA
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
The role of reactive oxygen species and hemeoxygenase-1 expression in the cytotoxicity, cell cycle alteration and apoptosis of dental pulp cells induced by BisGMA
چکیده انگلیسی

Biocompatibility of dentin bonding agents (DBAs) and resin composite is important to preserve the pulp vitality after operative restoration. Bisphenol-glycidyl-methacrylate (BisGMA) is one common monomer adding into DBAs and resin. In this study, we found that exposure of human dental pulp cells to BisGMA (>0.1 mm) led to cytotoxicity, G2/M cell cycle arrest and apoptosis as analyzed by propidium iodide (PI) and PI/annexin V dual fluorescent flow cytometry. These events were associated with a decline of cdc2, cdc25C and cyclinB1 expression at both mRNA and protein levels. BisGMA also induced the expression of hemeoxygenase-1 (HO-1), an oxidative stress responsive gene, in pulp cells. Catalase could prevent the BisGMA-induced alteration of cell cycle-related genes (cdc2, cdc25C, cyclinB1) and HO-1 expression in dental pulp cells. Interestingly, Zn-protoporphyrin (2.5–5 μm), a HO inhibitor, enhanced the BisGMA-induced reactive oxygen species (ROS) production and cytotoxicity. These results suggest that exposure to higher concentrations of BisGMA may stimulate ROS production, cell cycle arrest, apoptosis and cell death. Inducing the expression of HO-1 in dental pulp cells by BisGMA is mediated by ROS production and important to protect dental pulp against the toxicity by monomers present in composite resin and DBAs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomaterials - Volume 31, Issue 32, November 2010, Pages 8164–8171
نویسندگان
, , , , , , , , , ,