کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
798205 1467118 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Travelling wave solutions for a quasilinear model of field dislocation mechanics
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
پیش نمایش صفحه اول مقاله
Travelling wave solutions for a quasilinear model of field dislocation mechanics
چکیده انگلیسی

We consider an exact reduction of a model of Field Dislocation Mechanics to a scalar problem in one spatial dimension and investigate the existence of static and slow, rigidly moving single or collections of planar screw dislocation walls in this setting. Two classes of drag coefficient functions are considered, namely those with linear growth near the origin and those with constant or more generally sublinear growth there. A mathematical characterisation of all possible equilibria of these screw wall microstructures is given. We also prove the existence of travelling wave solutions for linear drag coefficient functions at low wave speeds and rule out the existence of nonconstant bounded travelling wave solutions for sublinear drag coefficients functions. It turns out that the appropriate concept of a solution in this scalar case is that of a viscosity solution. The governing equation in the static case is not proper and it is shown that no comparison principle holds. The findings indicate a short-range nature of the stress field of the individual dislocation walls, which indicates that the nonlinearity present in the model may have a stabilising effect. We predict idealised dislocation-free cells of almost arbitrary size interspersed with dipolar dislocation wall microstructures as admissible equilibria of our model, a feature in sharp contrast with predictions of the possible non-monotone equilibria of the corresponding Ginzburg–Landau phase field type gradient flow model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanics and Physics of Solids - Volume 58, Issue 12, December 2010, Pages 2043–2053
نویسندگان
, , ,