کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7985942 | 1515103 | 2018 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Determining EDS and EELS partial cross-sections from multiple calibration standards to accurately quantify bi-metallic nanoparticles using STEM
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
دانش مواد (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Spectroscopic signals such as EDS and EELS provide an effective way of characterising multi-element samples such as Pt-Co nanoparticles in STEM. The advantage of spectroscopy over imaging is the ability to decouple composition and mass-thickness effects for thin samples, into the number of various types of atoms in a sample. This is currently not possible for multi element samples using conventional ADF quantification techniques alone. With recent developments in microscope hardware and software, it is now possible to acquire the ADF, EDS and EELS signals simultaneously and at high speed. However, the methods of quantifying the signals emitted from the sample vary greatly. Most approaches use pure-element standards in the form of needles, nanoparticles and wedges to quantify the spectroscopic signal into either partial scattering cross-sections, zeta-factors or k-factors. But self-consistency between the different methods has not been verified and the units of the quantification are not standardised. We present a robust approach for measuring and combining ADF, EDS and EELS signals using needle and nanoparticle standards in units of the partial scattering cross-section. The partial scattering cross-section allows an easy interpretation of the signals emitted from the sample and enables accurate atom-counting of the sample.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Micron - Volume 113, October 2018, Pages 69-82
Journal: Micron - Volume 113, October 2018, Pages 69-82
نویسندگان
Aakash Varambhia, Lewys Jones, Andrew London, Dogan Ozkaya, Peter D. Nellist, Sergio Lozano-Perez,