کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8054710 1519491 2018 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optimising the parameters influencing performance and weed (goldenrod) identification accuracy of colour co-occurrence matrices
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Optimising the parameters influencing performance and weed (goldenrod) identification accuracy of colour co-occurrence matrices
چکیده انگلیسی
The results indicated that intensity levels and image size significantly influenced the computational requirements of CCMs. Images with 256 or 128 intensity levels could be used as these levels correctly classified 94% and 89% of test observations respectively. The processing times were increased from 535 μs to 10,650 μs and 9864 μs to 63,750 μs as the intensity increased from 8 to 256 levels and image size increased from 16 × 16 to 1024 × 1024 pixels, respectively. The time required for textural feature extraction was not statistically significant for different image sizes used in this study. Overall, the results indicated that intensity levels of 128 or 256, a unit image size of 128 × 128 pixels, and saturation colour plane alone or in combination with hue can help to minimise the processing burden without compromising the classification accuracy for real-time applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosystems Engineering - Volume 170, June 2018, Pages 85-95
نویسندگان
, , , , , ,