کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8054805 | 1519494 | 2018 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Object discrimination in poultry housing using spectral reflectivity
ترجمه فارسی عنوان
تبعیض شی در مرغ با استفاده از بازتابی طیفی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
چکیده انگلیسی
To handle surrounding objects, autonomous poultry house robots need to discriminate between various types of object present in the poultry house. A simple and robust method for image pixel classification based on spectral reflectance properties is presented. The four object categories most relevant for the autonomous robot PoultryBot are eggs, hens, housing elements and litter. Spectral reflectance distributions were measured between 400 and 1000Â nm and based on these spectral responses the wavelength band with lowest overlap between all object categories was identified. This wavelength band was found around 467Â nm with an overlap of 16% for hens vs. eggs, 12% for housing vs. litter, and less for other combinations. Subsequently, images were captured in a commercial poultry house, using a standard monochrome camera and a band pass filter centred around 470Â nm. In 87 images, intensity thresholds were applied to classify each pixel into one of four categories. For eggs, the required 80% correctly classified pixels was almost reached with 79.9% of the pixels classified correctly. For hens and litter, 40-50% of the pixels were classified correctly, while housing elements had lower performance (15.6%). Although the imaging setup was designed to function without artificial light, its optical properties influenced image quality and the resulting classification performance. To reduce these undesired effects on the images, and to improve classification performance, artificial lighting and additional processing steps are proposed. The presented results indicate both the simplicity and elegance of applying this method and are a suitable starting point for implementing egg detection with the robot.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosystems Engineering - Volume 167, March 2018, Pages 99-113
Journal: Biosystems Engineering - Volume 167, March 2018, Pages 99-113
نویسندگان
Bastiaan A. Vroegindeweij, Steven van Hell, Joris M.M. IJsselmuiden, Eldert J. van Henten,