کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8055136 | 1519515 | 2016 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Upper limit for context-based crop classification in robotic weeding applications
ترجمه فارسی عنوان
حد بالایی برای طبقه بندی محیط زیست در برنامه های ریشه ای وجدان
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شناخت محصول، ساختار ردیف ربات های وجد،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
چکیده انگلیسی
Knowledge of the precise position of crop plants is a prerequisite for effective mechanical weed control in robotic weeding application such as in crops like sugar beets which are sensitive to mechanical stress. Visual detection and recognition of crop plants based on their shapes has been described many times in the literature. In this paper the potential of using knowledge about the crop seed pattern is investigated based on simulated output from a perception system. The reliability of position-based crop plant detection is shown to depend on the weed density (Ï, measured in weed plants per square metre) and the crop plant pattern position uncertainty (Ïx and Ïy, measured in metres along and perpendicular to the crop row, respectively). The recognition reliability can be described with the positive predictive value (PPV), which is limited by the seeding pattern uncertainty and the weed density according to the inequality: PPV â¤Â (1 + 2ÏÏÏxÏy)â1. This result matches computer simulations of two novel methods for position-based crop recognition as well as earlier reported field-based trials.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biosystems Engineering - Volume 146, June 2016, Pages 183-192
Journal: Biosystems Engineering - Volume 146, June 2016, Pages 183-192
نویسندگان
Henrik Skov Midtiby, Björn Ã
strand, Ole Jørgensen, Rasmus Nyholm Jørgensen,