کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8057257 | 1520054 | 2018 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Efficient uncertainty quantification for a hypersonic trailing-edge flap, using gradient-enhanced kriging
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی هوافضا
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present a numerical study on the uncertainty quantification (UQ) of aerodynamic forces acting on a hypersonic trailing-edge flap model, as a result of input uncertainties in the experimental boundary conditions. The complex fluid-thermal-structural interaction on aerodynamic surfaces of a hypersonic flight vehicle and fluctuations in flow conditions result in uncertainties in their aerodynamic characteristics. We run the numerical simulations in US3D to quantify these uncertainties. Altogether four input uncertain parameters-inlet flow velocity, density, temperature, and the model wall temperature-are considered. We obtain the aerodynamic forces from the primal solve, as well as gradient information from a dedicated sensitivity solver. We compare the surrogate-based UQ analysis using kriging as well as gradient-enhanced kriging (GEK), accounting for significant observation errors in the gradients, and quantify the accuracy of the output probability density function (PDF). The accuracy of the predicted output PDF converges faster for GEK than for kriging, implying the importance of the gradient information in order to reduce the computational cost-in the present case, the computational cost is reduced by a median speed-up of roughly 3.0 by exploiting the gradient information available from the sensitivity solver.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Aerospace Science and Technology - Volume 80, September 2018, Pages 261-268
Journal: Aerospace Science and Technology - Volume 80, September 2018, Pages 261-268
نویسندگان
Sudip Bhattrai, Jouke H.S. de Baar, Andrew J. Neely,