کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8057435 | 1520055 | 2018 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Finite-time model-assisted active disturbance rejection control with a novel parameters optimizer for hypersonic reentry vehicle subject to multiple disturbances
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی هوافضا
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a scheme which combines finite-time model-assisted active disturbance rejection control and novel greedy criterion-based salp swarm algorithm is developed for attitude tracking problem of hypersonic reentry vehicle with multiple disturbances. To simplify control structure, the control scheme is designed within the framework of active disturbance rejection control completely. To lessen tuning parameters, a sigmoid function-based tracking differentiator is employed to generate a more realizable attitude transient profile instead of utilizing conventional nonlinear tracking differentiator. Taking known model information as model-assisted term, finite-time model-assisted extended state observers are constructed to estimate the lumped disturbance in attitude and angular rate loop with employment of function fal. To achieve rapid response and strong robustness, finite-time model-assisted control laws are derived by utilizing function fhan. Finally, a novel greedy criterion-based salp swarm algorithm is used to optimize control parameters in finite-time model-assisted control laws to achieve optimal solution that minimizes the tracking error and energy consumption. Comparative simulations are conducted to illustrate the effectiveness of the proposed scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Aerospace Science and Technology - Volume 79, August 2018, Pages 588-600
Journal: Aerospace Science and Technology - Volume 79, August 2018, Pages 588-600
نویسندگان
Yue Yu, Honglun Wang, Na Li, Huiping Zhang, Zikang Su, Xingling Shao,