کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8067690 1521103 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hydrogen risk for advanced PWR under typical severe accidents induced by DVI line break
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Hydrogen risk for advanced PWR under typical severe accidents induced by DVI line break
چکیده انگلیسی
Advanced passive pressurized water reactor (APWR) relies on In-Vessel Retention (IVR) of molten core debris under severe accidents, which makes hydrogen generation and distribution different with other PWRs. Hydrogen generation and hydrogen risk for APWR is studied with the integrated severe accident plant model, including Reactor Coolant System (RCS), engineered safety features (ESFs), simplified secondary side, containment and passive containment cooling system (PCCS). Initial events of DVI line break with passive core cooling system (PXS) compartment not flooded (named Case 1), DVI line break with PXS compartment flooded through broken DVI line (named Case 2), and DVI line break with IRWST direct injection available based on Case 1 (named Case 3) are selected to study hydrogen generation in pressure vessel, distributions in containment, and hydrogen risk controlled with igniters. Results show that hydrogen generated in pressure vessel is 257 kg, 461 kg and 499 kg for Case 1 to Case 3 due to different thermal hydraulic characteristics. During maintaining the water level in the pressure vessel with the safety measures, zirconium-steam reaction is violent and the duration of hydrogen generation is longer than the other two cases due to the availability of plenty of steam, resulting in an amount of hydrogen generation, and hydrogen distribution in upper containment is nearly 10%. Case 3 is screened to analyze the effectiveness of hydrogen control system consisting of igniters, showing that the hydrogen control system can mitigate hydrogen risk when igniters are available at the SAMG inlet condition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 94, August 2016, Pages 325-331
نویسندگان
,