کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8067977 1521110 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Experimental study on fundamental phenomena in HTGR small break air-ingress accident
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Experimental study on fundamental phenomena in HTGR small break air-ingress accident
چکیده انگلیسی
This study experimentally investigates fundamental phenomena in the HTGR small break air-ingress accident. Several important parameters including density ratio, break angle, break size, and main flow velocity are considered in the measurement and the analysis. The test-section is made of a circular pipe with small holes drilled around the surface and it is installed in the helium/air flow circulation loop. Oxygen concentrations and flow rates are recorded during the tests with fixed break angles, break sizes, and flow velocities for measurement of the air-ingress rates. According to the experimental results, the higher density difference leads to the higher rates of air-ingress with large sensitivity of the break angles. It is also found that the break angle significantly affects the air-ingress rates, which is gradually increased from 0° to 120° and suddenly decreased to 180°. The minimum air ingress rate is found at 0° and the maximum, at 110°. The air-ingress rate increases with the break size due to the increased flow-exchange area. However, it is not directly proportional to the break area due to the complexity of the phenomena. The increased flow velocity in the channel inside enhances the air-ingress process. However, among all the parameters, the main flow velocity exhibits the lowest effect on this process. In this study, the Froude Number relevant to the small break air-ingress conditions are newly defined considering both heavy and light fluids, and break angles. Based on this definition, the experimental data can be well re-arranged and collected. Finally, this study develops and proposes a non-dimensional parameter and a criteria for determination of the small break air-ingress flow regimes. As a result, the non-dimensional parameter higher than 0.49 indicates that the air-ingress is mainly controlled by density gradient effect. On the other hand, that lower than 0.47 indicates that the other effects such as inertia or diffusion are dominant air-ingress mechanisms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 87, Part 2, January 2016, Pages 145-156
نویسندگان
, , , , ,