کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8068494 | 1521115 | 2015 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
1/3D modeling of the core coolant circuit of a PHWR nuclear power plant
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A multi-dimensional computational fluid dynamics (CFD) one-phase model to simulate the in-core coolant circuit of a pressurized heavy water reactor (PHWR) of a nuclear power plant (NPP) was performed. Three-dimensional (3D) detailed modeling of the upper and lower plenums, the downcomer and the hot and cold leg nozzles was combined with finite volume one-dimensional (1D) code for modeling the behavior of all the 451 coolant channels. Suitable functions for introducing the distributed (friction losses) and concentrated (spacer grids, inlet restrictors and outlet throttles) pressure losses were used to consider the local pressure variation along the coolant channels. The special power distribution at each coolant channel was also taken into account. Results were compared with those previously obtained with a 0/3D model getting more realistic temperature patterns at the upper plenum. Although the present model is restricted to one-phase phenomena, the prediction of the local pressure and temperature along the channels allows for a preliminary identification of the location of incipient boiling by comparing with the local saturation temperature. The present model represents an improvement with respect to the previous 0/3D model. It corresponds to the necessary step before achieving a 1/3D two-phase model with which the pressure drop and subcooled boiling along the coolant channels as well as the overall reactor pressure vessel (RPV) void fraction distribution can be evaluated more accurately.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 83, September 2015, Pages 386-397
Journal: Annals of Nuclear Energy - Volume 83, September 2015, Pages 386-397
نویسندگان
Santiago Corzo, Damian Ramajo, Norberto Nigro,