کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8068686 1521117 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characters of neutron noise in full-size molten salt reactor
ترجمه فارسی عنوان
شخصیت های سر و صدای نوترونی در رآکتور نمک کامل مایع
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
چکیده انگلیسی
In the present paper, the frequency-dependent and space-dependent behavior of the neutron noise in a full-size Molten Salt Reactor (MSR) is investigated. The theoretical models considering the fuel circulation are established based on one-group neutron diffusion theory. Green's function of the neutron noise induced by a propagating perturbation is introduced with linear noise theory, due to the small perturbation. The equations are numerically calculated by developing a code, in which the eigenfunction expansion method is adopted. The static results show that the effective delayed neutron fraction changes non-monotonically with the increasing fuel velocity. In the dynamic case, the results are compared to those obtained in 1D MSR and a traditional reactor, in order to figure out the effects of both the fuel circulation and the system size. It is found that there is no difference in 1D and 3D MSR systems from the view of fuel circulation, i.e., the fuel circulation enhances the spatial neutronic coupling and leads to the stronger point kinetic effect. The more prominent space-dependent effect founded in 3D traditional reactors is also observed in the MSR, due to the looser neutronic coupling and the unique singularity of Green's function in the location of the perturbation. Another interesting finding is that Green's function for low frequencies changes non-monotonically with increasing velocity. The largest magnitude of Green's function is observed at the velocity where the effective delayed neutron fraction reaches its minimum. Finally, the neutron noise induced by a specific propagating perturbation is calculated and analyzed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Nuclear Energy - Volume 81, July 2015, Pages 179-187
نویسندگان
, ,