کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8071519 | 1521396 | 2018 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Assessment of indoor illuminance and study on best photosensors' position for design and commissioning of Daylight Linked Control systems. A new method based on artificial neural networks
ترجمه فارسی عنوان
ارزیابی روشنایی محیط داخلی و مطالعه بهترین موقعیت فندرسور برای طراحی و راه اندازی سیستم های کنترل روزانه مرتبط. یک روش جدید مبتنی بر شبکه های عصبی مصنوعی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
نورپردازی مصنوعی داخلی روشنایی انرژی کارآمد، کنترل روشنایی هوشمند شبکه های عصبی مصنوعی، قابلیت اطمینان اندازه گیری روشنایی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
Artificial lighting systems have to ensure appropriate illuminance with high energy efficiency according to best design practice and technical standards. These aims can be tackled, by incorporating a Daylight linked control system. However, the system behaviour is strongly influenced by several factors and, in particular, by the sensors' position. Indeed, very often the illuminance on work-plane is not fully correlated with illuminance measured by the photo-sensor used to control the luminaires. This fact leads to wrong information for the Daylight linked control systems affecting its efficacy. The artificial intelligence of Neural Networks can be exploited to provide a method for finding good relationships between the illuminance on workplane and the one measured in another surface. Artificial Neural Networks are able to process complex data set and to give as output the illuminance in a point. By the use of measured values in an experimental set up, the output of several Artificial Neural Networks related to different sensors placements have been analysed. In this way it was possible to find the position of the photo-sensor associated to the best forecast of the workplane illuminance with a mean square error of 2.20â¯Eâ3 and R2 of 0.9583.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 154, 1 July 2018, Pages 466-476
Journal: Energy - Volume 154, 1 July 2018, Pages 466-476
نویسندگان
M. Beccali, M. Bonomolo, G. Ciulla, V. Lo Brano,