کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8071881 | 1521400 | 2018 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Lifetime optimization framework for a hybrid renewable energy system based on receding horizon optimization
ترجمه فارسی عنوان
چارچوب بهینه سازی طول عمر برای یک سیستم انرژی تجدید پذیر ترکیبی بر اساس بهینه سازی افق به عقب
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
بهینه سازی طول عمر، سیستم انرژی تجدید پذیر ترکیبی، طراحی / عملیات بهینه سازی، بهینه سازی افق در حال سقوط،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
In this work, a novel convex sequence framework for real-time receding horizon operation optimization of a hybrid renewable energy system integrated with optimal sizing is presented to increase the penetration rate of renewable energy in supplying the demand. The proposed framework optimizes the entire lifetime cost of a system consisting of two main steps which are 1) design & installation and 2) operation as two sequence modules. This framework is applied to a hybrid renewable energy system which includes PV, wind turbine, batteries and a diesel generator. In the operation optimization, receding horizon strategy is used to optimize the operation schedule. Mixed integer convex programming method is applied in order to achieve the optimal operation. The hybrid renewable energy system is installed to actualize the design optimization outputs and to measure the required data for real-time operation optimization. The results show the proposed framework can be applied to facilitate the reliable real-time operation using real optimal input data for taking better advantage of the renewable energy resources. The effect of length of the horizon on optimal scheduling is also investigated. The results indicate that increasing of prediction horizon length enhances the economic performance and increases the share of renewable energy in the hybrid renewable energy system (from 68.5% to 81.4%).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 150, 1 May 2018, Pages 617-630
Journal: Energy - Volume 150, 1 May 2018, Pages 617-630
نویسندگان
Atefeh Behzadi Forough, Ramin Roshandel,